Reduced basis finite element heterogeneous multiscale method for high-order discretizations of elliptic homogenization problems
نویسندگان
چکیده
A new finite element method for the efficient discretization of elliptic homogenization problems is proposed. These problems, characterized by data varying over a wide range of scales cannot be easily solved by classical numerical methods that need mesh resolution down to the finest scales and multiscale methods capable of capturing the large scale components of the solution on macroscopic meshes are needed. Recently, the finite element heterogeneous multiscale method (FE-HMM) has been proposed for such problems, based on a macroscopic solver with effective data recovered from the solution of micro problems on sampling domains at quadrature points of a macroscopic mesh. Departing from the approach used in the FE-HMM, we show that interpolation techniques based on the reduced basis methodology (an offline-online strategy) allow one to design an efficient numerical method relying only on a small number of accurately computed micro solutions. This new method, called the reduced basis finite element heterogeneous multiscale method (RB-FE-HMM) is significantly more efficient than the FE-HMM for high order macroscopic discretizations and for three-dimensional problems, when the repeated computation of micro problems over the whole computational domain is expensive. A priori error estimates of the RB-FE-HMM are derived. Numerical computations for two and three dimensional problems illustrate the applicability and efficiency of the numerical method.
منابع مشابه
Contents 1 Schedule 4 2
In this talk we will present recent developments in the design and analysis of numerical homogenization methods. Numerical methods for linear and nonlinear partial differential equations that combine multiscale methods with reduced order modeling techniques such as the reduced basis method will be discussed. The talk is based upon a series of joint works with various collaborators[1,2,3,4,5]. [...
متن کاملReduced order modeling techniques for numerical homogenization methods applied to linear and nonlinear multiscale problems
The characteristic of effective properties of physical processes in heterogeneous media is a basic modeling and computational problem for many applications. As standard numerical discretization of such multiscale problems (e.g. with classical finite element method (FEM)) is often computationally prohibitive, there is a need for a novel computational algorithm able to capture the effective behav...
متن کاملReduced basis finite element heterogeneous multiscale method for quasilinear elliptic homogenization problems
A reduced basis finite element heterogeneous multiscale method (RB-FE-HMM) for a class of nonlinear homogenization elliptic problems of nonmonotone type is introduced. In this approach, the solutions of the micro problems needed to estimate the macroscopic data of the homogenized problem are selected by a Greedy algorithm and computed in an offline stage. It is shown that the use of reduced bas...
متن کاملMixed Multiscale Methods for Heterogeneous Elliptic Problems
We consider a second order elliptic problem written in mixed form, i.e., as a system of two first order equations. Such problems arise in many contexts, including flow in porous media. The coefficient in the elliptic problem (the permeability of the porous medium) is assumed to be spatially heterogeneous. The emphasis here is on accurate approximation of the solution with respect to the scale o...
متن کاملMultilevel Monte Carlo Methods for Stochastic Elliptic Multiscale PDEs
In this paper Monte Carlo Finite Element (MC FE) approximations for elliptic homogenization problems with random coefficients which oscillate on n ∈ N a-priori known, separated length scales are considered. The convergence of multilevel MC FE (MLMC FE) discretizations is analyzed. In particular, it is considered that the multilevel FE discretization resolves the finest physical length scale, bu...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- J. Comput. Physics
دوره 231 شماره
صفحات -
تاریخ انتشار 2012